Zariski Decompositions on Arithmetic Surfaces

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Arithmetic Zariski Pairs in Degree 6

We define a topological invariant of complex projective plane curves. As an application, we present new examples of arithmetic Zariski pairs.

متن کامل

A Simple Proof for the Existence of Zariski Decompositions on Surfaces

The decomposition D = P + N is called the Zariski decomposition of D, the divisors P and N are respectively the positive and negative parts of D. Zariski’s result has been used to study linear series on surfaces, and in the classification of surfaces (see [1, Chapt. 14] and [4, Sect. 2.3.E], as well as the references therein). We also mention that there is an extension to pseudo-effective divis...

متن کامل

Restricted Volumes and Divisorial Zariski Decompositions

We give a relation between the existence of a Zariski decomposition and the behavior of the restricted volume of a big divisor on a smooth (complex) projective variety. Moreover, we give an analytic description of the restricted volume in the line of Boucksom’s work. It enables us to define the restricted volume of a transcendental class on a compact Kähler manifold in natural way. The relation...

متن کامل

Linear series on surfaces and Zariski decomposition

Remark 1. We quickly recall a couple of definitions Let DivQ(X) := Div(X)⊗Q. On smooth projective surfaces all Q-Weil divisors are also Q-Cartier, hence we can write Q-Cartier every divisor D as a finite sum ∑ xiCi, where the Ci are distinct integral curves and xi ∈ Q. A divisor D is called effective (or sometimes positive) if xi ≥ 0 ∀i. If D · C ≥ 0 for all integral curves C then D we be calle...

متن کامل

Zariski density and computing in arithmetic groups

For n > 2, let Γn denote either SL(n,Z) or Sp(n,Z). We give a practical algorithm to compute the level of the maximal principal congruence subgroup in an arithmetic group H ≤ Γn. This forms the main component of our methods for computing with such arithmetic groups H. More generally, we provide algorithms for computing with Zariski dense groups in Γn. We use our GAP implementation of the algori...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Publications of the Research Institute for Mathematical Sciences

سال: 2012

ISSN: 0034-5318

DOI: 10.2977/prims/89